References

[1]

Inter-American Development and Deep decarbonization pathways Latin America - Consortium. Getting to Net-Zero Emissions: Lessons from Latin America and the Caribbean. Technical Report, Inter-American Development Bank, Washington D.C, 2019. doi:http://dx.doi.org/10.18235/0002024.

[2]

Christopher Bataille, Henri Waisman, Yann Briand, Johannes Svensson, Adrien Vogt-Schilb, Marcela Jaramillo, Ricardo Delgado, Ricardo Arguello, Leon Clarke, Thomas Wild, Francisco Lallana, Gonzalo Bravo, Gustavo Nadal, Gaëlle Le Treut, Guido Godinez, Jairo Quiros-Tortos, Eunice Pereira, Mark Howells, Daniel Buira, Jordi Tovilla, Jamil Farbes, Jones Ryan, Daniel De La Torre Ugarte, Mauricio Collado, Fernando Requejo, Ximena Gomez, Rafael Soria, Daniel Villamar, Pedro Rochedo, and Mariana Imperio. Net-zero deep decarbonization pathways in Latin America: Challenges and opportunities. Energy Strategy Reviews, 30:100510, jul 2020. doi:10.1016/j.esr.2020.100510.

[3]

missing journal in Batt_20

[4]

missing note in Quiros-Tortos2021

[5]

M. Welsch, M. Howells, M. Bazilian, J. F. DeCarolis, S. Hermann, and H. H. Rogner. Modelling elements of Smart Grids - Enhancing the OSeMOSYS (Open Source Energy Modelling System) code. Energy, 46(1):337–350, 2012. URL: http://dx.doi.org/10.1016/j.energy.2012.08.017, doi:10.1016/j.energy.2012.08.017.

[6]

Manuel Welsch, Mark Howells, Mohammad Reza, Brian Ó Gallachóir, Paul Deane, Neil Strachan, Morgan Bazilian, Daniel Kammen, Lawrence Jones, Goran Strbac, and Holger Rogner. Supporting security and adequacy in future energy systems: The need to enhance long‐term energy system models to better treat issues related to variability. International journal of energy research, 39:377–396, 2014. doi:https://doi.org/10.1002/er.3250.

[7]

Manuel Welsch, Paul Deane, Mark Howells, Brian Ó Gallachóir, Fionn Rogan, Morgan Bazilian, and Hans-Holger Rogner. Incorporating flexibility requirements into long-term energy system models – A case study on high levels of renewable electricity penetration in Ireland. Applied Energy, 135:600–615, 2014. URL: http://www.sciencedirect.com/science/article/pii/S0306261914008836, doi:https://doi.org/10.1016/j.apenergy.2014.08.072.

[8]

J P Deane, Alessandro Chiodi, Maurizio Gargiulo, and Brian P Ó Gallachóir. Soft-linking of a power systems model to an energy systems model. Energy, 42(1):303–312, 2012. URL: http://www.sciencedirect.com/science/article/pii/S0360544212002551, doi:https://doi.org/10.1016/j.energy.2012.03.052.

[9]

Andreas Belderbos and Erik Delarue. Accounting for flexibility in power system planning with renewables. International Journal of Electrical Power & Energy Systems, 71:33–41, 2015. URL: https://www.sciencedirect.com/science/article/pii/S0142061515001167, doi:https://doi.org/10.1016/j.ijepes.2015.02.033.

[10]

P. Mancarella, G. Andersson, J.A. Peças-Lopes, and K.R.W. Bell. Modelling of integrated multi-energy systems: drivers, requirements, and opportunities. In 2016 Power Systems Computation Conference (PSCC), volume, 1–22. 2016. doi:10.1109/PSCC.2016.7541031.

[11]

Paolo Gabrielli, Matteo Gazzani, Emanuele Martelli, and Marco Mazzotti. Optimal design of multi-energy systems with seasonal storage. Applied Energy, 219:408–424, 2018. URL: https://www.sciencedirect.com/science/article/pii/S0306261917310139, doi:https://doi.org/10.1016/j.apenergy.2017.07.142.

[12]

Bryan Palmintier. Flexibility in generation planning: identifying key operating constraints. In 2014 Power Systems Computation Conference, volume, 1–7. 2014. doi:10.1109/PSCC.2014.7038323.

[13]

Bryan S. Palmintier and Mort D. Webster. Impact of operational flexibility on electricity generation planning with renewable and carbon targets. IEEE Transactions on Sustainable Energy, 7(2):672–684, 2016. doi:10.1109/TSTE.2015.2498640.

[14]

Niina Helistö, Juha Kiviluoma, Hannele Holttinen, Jose Daniel Lara, and Bri-Mathias Hodge. Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches. WIREs Energy and Environment, 8(5):e341, 2019. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/wene.341, doi:https://doi.org/10.1002/wene.341.

[15]

Stefan Pfenninger. Dealing with multiple decades of hourly wind and PV time series in energy models: A comparison of methods to reduce time resolution and the planning implications of inter-annual variability. Applied Energy, 197:1–13, 2017. URL: https://www.sciencedirect.com/science/article/pii/S0306261917302775, doi:https://doi.org/10.1016/j.apenergy.2017.03.051.

[16]

S Pye, O Broad, C Bataille, P Brockway, H E Daly, R Freeman, A Gambhir, O Geden, F Rogan, S Sanghvi, J Tomei, I Vorushylo, and J Watson. Modelling net-zero emissions energy systems requires a change in approach. Climate Policy, 21(2):222–231, 2021. URL: https://doi.org/10.1080/14693062.2020.1824891, doi:10.1080/14693062.2020.1824891.

[17]

Miguel Chang, Jakob Zink Thellufsen, Behnam Zakeri, Bryn Pickering, Stefan Pfenninger, Henrik Lund, and Poul Alberg Østergaard. Trends in tools and approaches for modelling the energy transition. Applied Energy, 290:116731, 2021. URL: https://www.sciencedirect.com/science/article/pii/S0306261921002476, doi:https://doi.org/10.1016/j.apenergy.2021.116731.

[18]

Martha Maria Frysztacki, Jonas Hörsch, Veit Hagenmeyer, and Tom Brown. The strong effect of network resolution on electricity system models with high shares of wind and solar. Applied Energy, 291:116726, 2021. URL: https://www.sciencedirect.com/science/article/pii/S0306261921002439, doi:https://doi.org/10.1016/j.apenergy.2021.116726.

[19]

Campos Inês, Pontes Luz Guilherme, Marín-González Esther, Gährs Swantje, Hall Stephen, and Holstenkamp Lars. Regulatory challenges and opportunities for collective renewable energy prosumers in the EU. Energy Policy, 138:111212, 2020. URL: http://www.sciencedirect.com/science/article/pii/S0301421519307943, doi:https://doi.org/10.1016/j.enpol.2019.111212.

[20]

Weiqi Hua, Jing Jiang, Hongjian Sun, and Jianzhong Wu. A blockchain based peer-to-peer trading framework integrating energy and carbon markets. Applied Energy, 279:115539, 2020. URL: https://www.sciencedirect.com/science/article/pii/S0306261920310515, doi:https://doi.org/10.1016/j.apenergy.2020.115539.